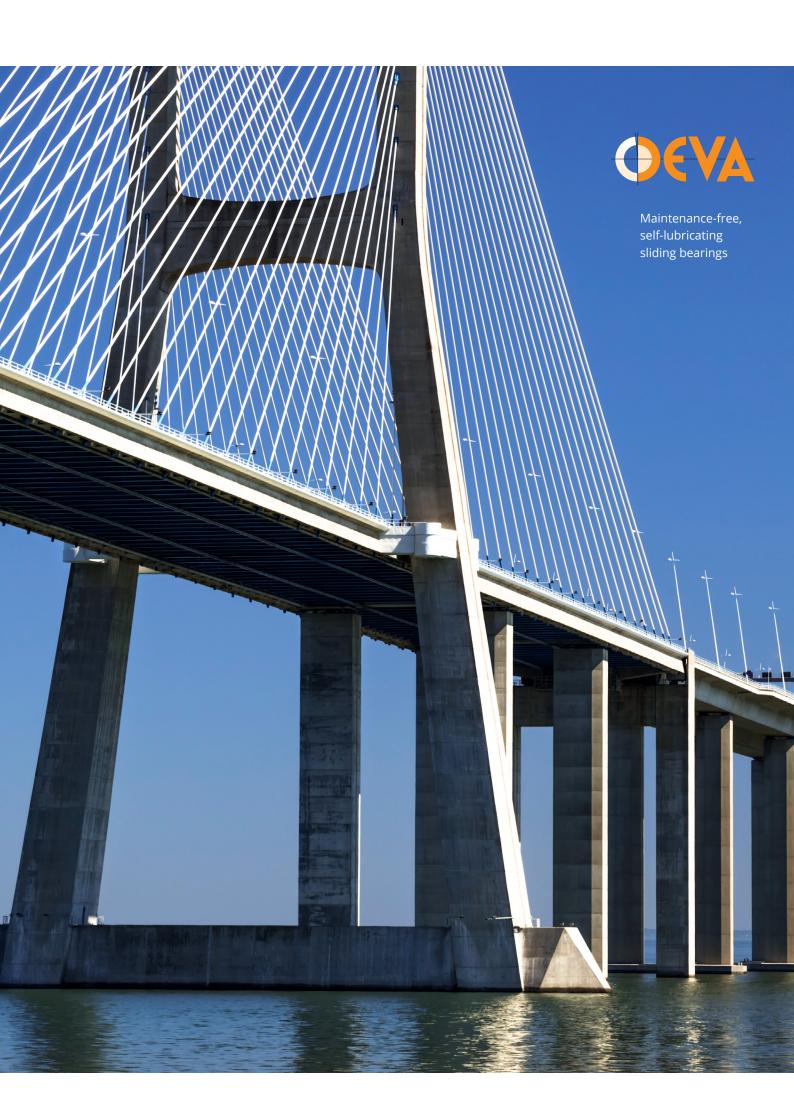


Technical manual


Your challenges are our fascination.

Self-lubricating fiber composite sliding bearings

Contemporary designs pose major challenges for modern sliding materials. Maintenance-free operation is often expected even under difficult operating conditions with extremely high loads.

Constant cost pressure forces increasing availability of machines and systems, even though no restrictions can be accepted with regard to their reliability. With maintenance-free, self-lubricating high-performance sliding materials from the DEVA® product range, it is now possible to implement sliding bearing concepts that operate reliably over long periods of time.

A long service life is our standard for your application.

deva.tex[®] materials are suitable for applications with high, long-lasting static and dynamic loads, at relatively low sliding speeds in any direction of movement. They are also suitable for use where conventional lubrication is not possible or where other resistance requirements exist, e.g., wear, specific operating and environmental influences, impact stress, edge pressure, vibrations, etc..

Typical applications for deva.tex[®] fiber composite sliding bearings can be found in these industries:

Hydro-Civil engineering

Shipbuilding and offshore industry

Bridges and steel construction

Onshore and offshore wind turbines

Mechanical engineering

e Railway vehicles

Injection molding and tire molding

Agricultural and construction machines

Food and packaging machines

€VA

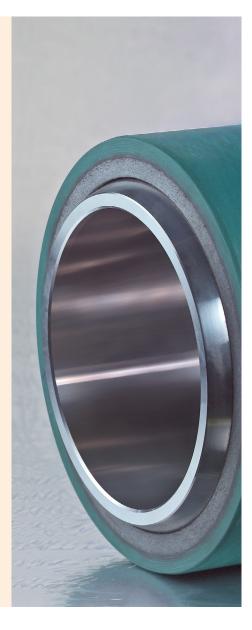
Technical manual deva.tex®

Table of Contents

1	Material properties	4
2	Sliding bearing materials	5
	2.1 Microstructure and texture	
	2.2 Surface condition	
	2.3 Overview deva.tex [®] materials	
3	Quality and certificates	8
4	Load cases	9
5	Mating materials	10
6	Cylindrical sliding bearings	12
	6.1 Recommended standard dimensions	
	6.2 Fits	
	6.3 Special dimensions and fits6.4 Installation by means of press-fitting	
	6.5 Installation by supercooling with liquid nitrogen	
7	Sliding plates and segments	18
	7.1 Dimensions of raw plates	
	7.2 Installation of sliding plates, segments and thrust washers in general	
	7.3 Installation of sliding plates, segments and thrust washers with fixing device	
	7.4 Installation of sliding plates by adhesive bonding	
8	Chemical resistance	22
9	Design examples and applications	24
10	Data for the design of DEVA® sliding bearings	26

Material properties

Maintenance-free and self-lubricating high-performance sliding material


All deva.tex[®] materials consist of a highly dimensional and temperature stable epoxy resin with fillers and additional fiber reinforcement. Depending on the grade, deva.tex[®] is either a single-layer material as a pure sliding material or a two-layer material consisting of a sliding layer and a strength-optimized load-bearing layer.

The composition of the individual material grade determines its physical, mechanical and chemical properties and is therefore the basis for the selection of materials for a specific application.

A total of 7 material grades are available to choose from according to the application requirements.

Performance promise Our deva.tex®

- Enables maintenance-free operation without lubrication
- Has a high static and dynamic load capacity
- Has good sliding properties with a negligible stick-slip effect
- Has very good edge load properties
- Can be used in corrosive environments
- Does not swell in water and is therefore well suited for use in seawater and many industrial fluids where high dimensional stability is required
- Is usable for translational, rotational and oscillating movements with cylindrical guidance or for plain surface applications (Movements can occur individually or in combination)
- Can be used in dusty environments
- Is applied where conventional lubrication is not possible

Sliding bearing materials

Fiber-reinforced epoxy resin matrix with homogeneous solid lubricant incorporation

The various deva.tex[®] materials are differentiated by the selected raw materials, the manufacturing process and the associated material structure. The fillers in the resin matrix as well as the fiber reinforcements in the sliding layer serve to optimize the tribological properties in order to minimize friction and wear. The glass-fiber reinforced backing layer provides highest material strength for the two-layer materials.

2.1 Microstructure and texture

The manufacturing process as well as the selection of the ingredients determine the micro- and macrostructure of the deva.tex[®] materials. This results in 4 basic structures and in a total of 7 deva.tex[®] materials by varying the additives and raw materials.

The 4 deva.tex [®] microstructures	
 Combined cast and laminate structure (1) The backing layer consists of a glass fiber fabric embedded in a high-temperature epoxy resin (2) The sliding layer consists of a special epoxy resin with embedded solid lubricants 	(2)
One-layer laminate structure (1) The material consists of a special synthetic fabric, embedded in epoxy resin with solid lubricants	0(1)
 Two-layer laminate structure (1) The backing layer consists of a glass fiber fabric embedded in a high-temperature epoxy resin (2) The sliding layer consists of a special synthetic fabric embedded in epoxy resin with solid lubricants 	(2) 0
 Two-layer filament structure (1) The backing layer consists of continuously wound glass fibers embedded in a high-temperature epoxy resin (2) The sliding layer consists of special, continuously wound, high-strength and tribologically optimized synthetic fibers embedded in a high-temperature epoxy resin with solid lubricants 	(2)

Figure 2.1.1

2.2 Surface condition

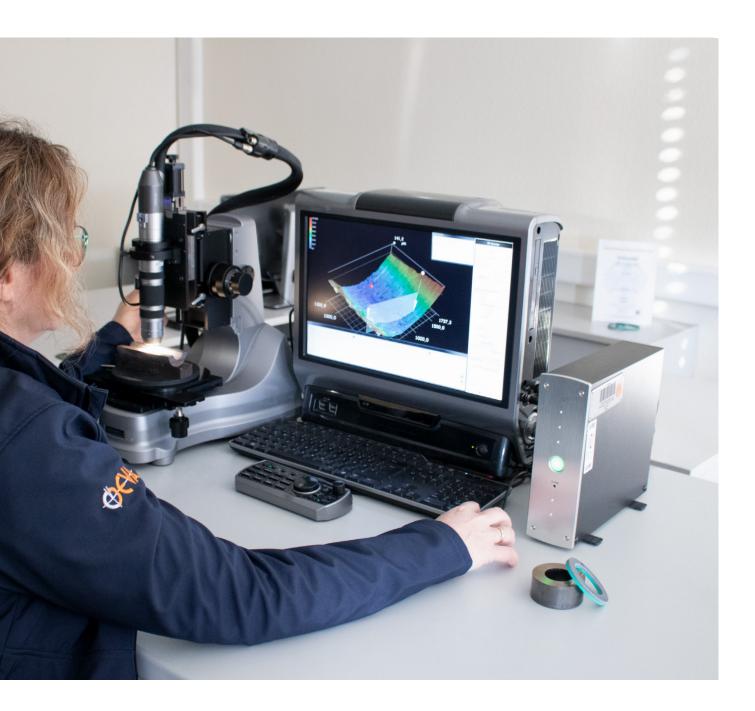
Due to the fiber structure, it is not possible to provide surface roughness data in accordance with DIN 4768 or DIN 4771. Details on our drawings are for orientation only, but are not guaranteed values. The surfaces can vary within a product, depending on the selected tolerance design. Bushings with standard tolerance D11 are unmachined and have a smoother surface than machined precision bearings.

2.3 Overview of deva.tex[®] materials

You can find detailed material properties including Young's modulus, chemical resistance, etc. in our material data sheets available on request.

deva.tex [®]	Macrostructure	Max. permissible stat. load Ē _{statīmax} [MPa]	<u>M</u> ax, permissible dyn. Ioad P _{dynimax} [MPa]	Max. Sliding speed (dry) U _{max} [m/s]	Max. pU value (dry) pU _{max} [MPa × m/s]	Application temperature range T [°C]	Friction coefficient depending on Operating conditions (dry) µ	Friction coefficient depending on Operating conditions (water) µ	Minimum hardness of mating material [HB]	Recommended surface roughness of mating material Ra [µm]	Operating conditions and special features	Available designs
532	Sliding plates of combined cast and laminated structure	100	60	0.1	0.9	-40 to 75	0.03 to 0.15	0.05 to 0.16	180	0.4 to 1.0	 General for dry running and water lubricated applications 	(b) (d) (e)
541	One-layer laminate structure	150 ^(a) 150 ^{(b) (d-f)} 150 ^(c)	90 ^(a) 75 ^{(b) (d-f)} 80 ^(c)	0.1	1.2	-60 to 100	0.05 to 0.18	0.08 to 0.20	180	0.4 to 1.0	 General for dry running and water lubricated applications Tested according to DIN EN 45545-2:2016-02 (R23) (fire protection in rail vehicles) 	(a) (b) (c) (d) (e) (g)
542	Two-layer laminate structure	200 ^(a) 150 ^(b) ^(d-f) 140 ^(c)	100 ^(a) 75 ^(b) ^(d-f) 80 ^(c)	0.1	1.2	-60 to 100	0.05 to 0.18	0.08 to 0.20	180	0.4 to 1.0	 General for dry running and water lubricated applications 	(a) (b) (c) (d) (e) (f)
544	Two-layer laminate structure	200 (a) 150 ^(b) (d-f) 140 ^(c)	100 ^(a) 75 ^(b) ^(d-f) 80 ^(c)	0.1	1.2	-60 to 100	0.05 to 0.18	0.08 to 0.20	180	0.4 to 1.0	 General for dry running Tested according to DIN EN 45545-2:2016-02 (R23) (fire protection in rail vehicles) 	(a) (b) (c) (d) (e) (f)
545	Sliding plates two-layer laminate structure	150	75	0.1	1.2	-60 to 80	0.06 to 0.19	-	180	0.4 to 1.0	 General for dry running Grease lubrication permissible 	(b) (d) (e) (f)
Availa	able designs	(a)	0	(b)	Ð	(c)	0	(d)	0	(e)	(f) (g)	0

deva.tex [®]	Macrostructure	Max. permissible stat. load Ē _{statmax} [MPa]	<u>M</u> ax. permissible dyn. load p _{statmax} [MPa]	Max. Sliding speed (dry) U _{max} [m/s]	Max. pU value (dry) pU _{max} [MPa × m/s]	Application temperature range T [°C]	Friction coefficient depending on Operating conditions (dry) µ	Friction coefficient depending on Operating conditions (water) µ	Minimum hardness of mating material [HB]	Recommended surface roughness of mating material Ra [µm]	Operating conditions and special features	Available designs
552	Two-layer filament structure	230 ^(a) 140 ^(c)	140 ^(a) 90 ^(c)	0.2	1.5	-60 to 160	0.03 to 0.17	0.04 to 0.18	180	0.4 to 1.0	 General for dry running and water lubricated applications DNV approved for offshore applications 	(a) (c) (g)*
558	Two-layer filament structure	230	140	0.2	1.5	-60 to 130	0.03 to 0.17	0.04 to 0.18	180	0.4 to 1.0	 General for dry running and water lubricated applications Especially for higher quantities Only available in standard tolerance D11 according to table 6.1.2 	(a)
Availa	ble designs	(a)	0	(b)		(c)	0	(d)	0	(e)	(f) (g)	\bigcirc


Table 2.3.1

Quality and certificates

Environmental protection and production safety

We attach great importance to qualitative, environmentally conscious and safe production. We are committed to this through the application of a variety of internationally recognized standards for quality assurance, emission control and workplace safety.

- RoHS and REACH compliant
- Certificate of origin
- Acceptance test certificates DIN EN 10204-2.1; 2.2; 3.1 and 3.2
- Certified according to ISO 9001; ISO 14001 and ISO 45001

Load cases

The four cases of bearing load

DEVA[®] differentiates between four load cases. We do this to take into account the fatigue influences under dynamic load. The percentage values refer to the limit values given in the material data sheets and technical manuals.

The specifications should be understood as guide values. With alternation of loads in particular, the frequency and the number of cycles need to be considered with regard to the fatigue properties. Please contact us for a detailed analysis in a personal discussion.

Load case 0

The acting normal force is constant or can be assumed to be constant without frequent or rapid load changes or load alternations. There is no sliding movement.

Permissible limit load: 100% of the max. permissible static load according to material data sheet

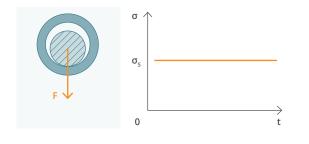
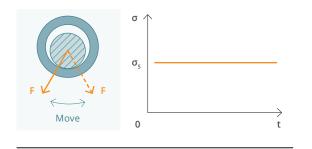



Diagram 4.1.1

Load case 2

The acting normal force is constant or can be assumed to be constant without frequent or rapid load changes or load alternations. In addition, a sliding movement takes place.

Permissible limit load: 100% of the max. permissible dynamic load according to the material data sheet

Load case 1

The acting normal force changes frequently or quickly or oscillates strongly around a nominal force. There is no sliding movement.

Permissible limit load: 80% of the max. permissible static load according to material data sheet

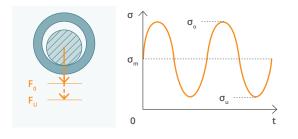


Diagram 4.1.2

Load case 3

The acting normal force changes frequently or quickly or oscillates strongly around a nominal force. In addition, a sliding movement takes place.

Permissible limit load: 100% of the max. permissible dynamic load according to the material data sheet

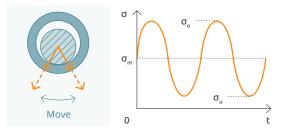


Diagram 4.1.4

Mating materials

Roughness and surface finish

The deva.tex[®] sliding materials require the use of a mating material with a hardness of at least 180 HB. A hardened surface should be used in the event of abrasive particles from the environment. When using deva.tex[®], the surface roughness is ideally Ra = 0.4 to 1.0 μ m, produced by grinding. Depending on the operating conditions, greater surface roughness can also be accepted.

With regard to the surface finish, it is also possible to use protective sleeves with corresponding hardness. Overlay welding or other protective coatings (hard chrome-plated, electroless nickel, etc.) can also be used under certain conditions. The corrosion requirements met by the material must be determined based on the individual operating conditions.

Roughness of the mating materials

Influence of the surface roughness of the mating material on the microwear of the sliding material (Model representation from various investigations)

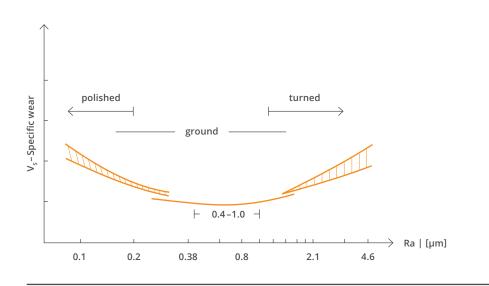


Diagram 5.1.1

Suggested materials

The following table gives an overview of some possible mating materials.

		Com	andards	
Material number	DIN designation	USA – ANSI	GB-BS 970	F-AFNOR

Mating materials for normal applications

1.0543	ZSt 60-2	Grade 65	55C	A60-2
1.0503	C45	1045	080M46	CC45
1.7225	42CrMo4	4140	708M40	42CD4

Table 5.1.1

Mating materials for corrosive environment

1.4021	X20Cr13	420	420537	Z20C13
1.4057	X17CrNi-16-2	431	432529	Z15CN16.02
1.4112	X90CrMoV18	440B	-	(Z70CV17)
1.4122	X35CrMo17	-	-	-
1.4418	X4CrNiMo16-5-1	S165M	-	Z6CND16-05-01

Table 5.1.2

Mating materials for use in seawater

1.4462	X2CrNiMoN22-5-3	UNS531803	318513	Z3CND24-08
1.4501	X2CrNiMoCuWN25-7-4	UNSS32760	-	Z3CND25.06Az
2.4856	Inconel 625	-	-	-

Table 5.1.3

Cylindrical sliding bearings

6.1 Recommended standard dimensions

The sizes listed in the following table 6.1.2 are available in deva.tex[®] 541, 542, 544, 552 and 558 (deva.tex[®] 558 only up to D_1 = 120 mm). Larger diameters, special dimensions and deviating tolerances for special applications are available on request. All bearings can be manufactured to customer specifications. Other dimensions and machining allowances for precision bearings are available on request.

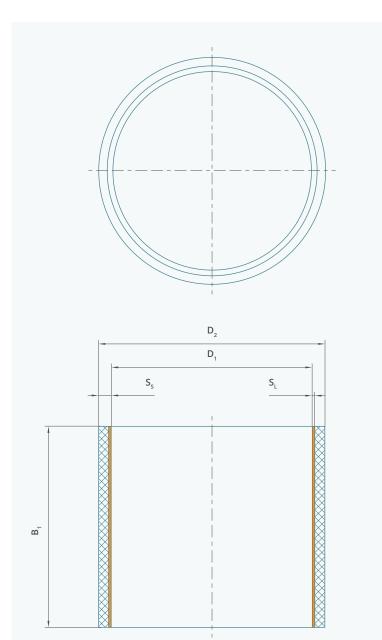


Figure 6.1.1

 S_s –Wall thickness S_L –Sliding layer thickness

Standard dimensions for sliding layer thicknesses

Standard dimensions for sliding layers

≤50	0.6	0.4				
≤100	1.0	0.7				
≤200	1.5	1.0				
≤ 300	1.75	-				
≤400	2.0	-				
≤ 500	2.5	-				

Table 6.1.1

Deburring and chamfering

Deburring of the radial bearings is carried out by vibratory grinding as standard.

On request, additional mechanical processing (e.g., chamfers) can be applied to the inner and outer diameters. 541/542/544/552/558 deva.tex $^{\circ}$

	D	D_2	Ъ
	16	20	15
	16	20	20
	20	24	15
	20	24	20
	20	24	25
	22	26	15
	22	26	20
	22	26	25
	25	30	20
	25	30	25
	25	30	30
	25	30	40
	28	34	20
	28	34	30
	28	34	35
	28	34	40
	30	36	25
	30	36	30
	30	36	35
	30	36	40
	35	41	30
	35	41	35
	35	41	40
	35	41	50
	40	48	20
	40	48	30
	40	48	40
	40	48	50
	45	53	35
	45	53	45
	45	53	50
	45	53	55
	45	53	60
	50	58	30
	50	58	40
	50	58	50
	50	58	60
	55	63	40
	55	63	50
	55	63	55
	55	63	70
	60	70	40
	60	70	45
	60	70	50
	60	70	60
	60	70	75
	65	75	50
	65	75	60
	65	75	65
	65	75	80
_			

Nominal dimensions

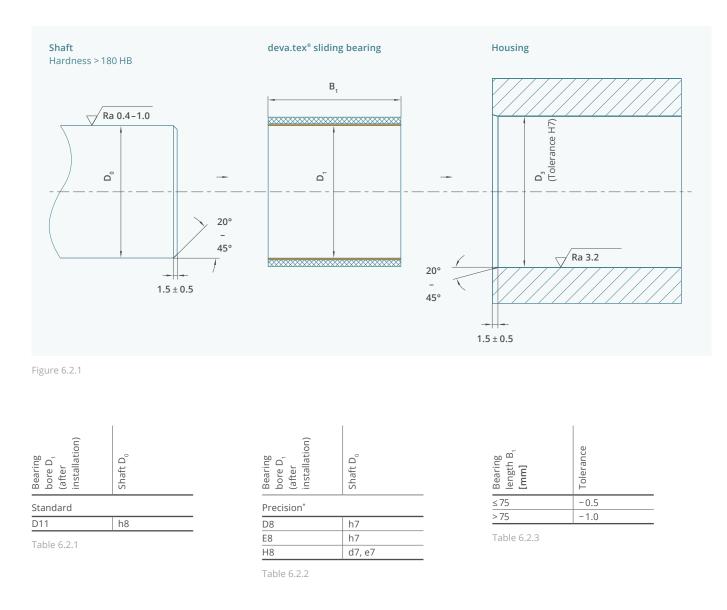
in mm

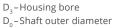
	Nomi	Nominal dimensions in mm				
541/542/544/552/558 deva.tex®	Ū.	D_2	B			
~	70	80	40			
22	70	80	55			
2/1	70	80	70			
20	70	80	85			
4/	75	85	50			
54	75	85	60			
5/	75	85	75			
54	75	85	90			
1	80	90	60			
54	80	90	70			
	80	90	80			
	80	90	90			
	80	90	100			
	85	95	65			
	85	95	85			
	85	95	100			
	85	95	105			
	90	105	70			
	90	105	80			
	90	105	90			
	90	105	110			
	90	105	120			
	95	110	75			
	95	110	95			
	95	110	100			
	95	110	115			
	100	115	80			
	100	115	90			
	100	115	100			
	100	115	120			
	100	115	130			
	110	125	85			
	110	125	100			
	110	125	110			
	110	125	120			
	110	125	135			
	120	135	90			
	120	135	100			
	120	135	120			
	120	135	130			
	120	135	150			

Table 6.1.2

	Nominal dimensions in mm				
541/542/544/552 deva.tex [®]					
de	Ū,	D2	ъ		
5	130	145	100		
52	130	145	120		
4	130	145	130		
5	130	145	150		
12	130	145	160		
27	140	155	100		
4	140	155	110		
Ω.	140	155	120		
	140	155	130		
	140	155	140		
	140	155	150		
	140	155	170		
	150	165	100		
	150	165	120		
	150	165	130		
	150	165	150		
	150	165	180		
	160	180	120		
	160	180	130		
	160	180	150		
	160	180	160		
	160	180	180		
	180	200	120		
	180	200	140		
	180	200	180		
	180	200	200		
	180	200	220		
	200	220	180		
	200	220	200		
	220	240	(1)		
	230	250	(1)		
	240	260	(1)		
	250	270	(1)		
	260	280	(1)		
	280	300	(1)		
	300	330	(1)		
	320	350	(1)		
	330	360	(1)		
	340	370	(1)		
	350	380	(1)		
	380	410	(1)		
	400	430	(1)		
	420	450	(1)		
	440	480	(1)		
	450	490	(1)		
	480	520	(1)		
	500	540	(1)		
Table 6.1	.2				

Table 6.1.2


6.2 Fits


deva.tex[®] sliding bearings are pressed in with interference fit between housing inside diameter and bearing outside diameter. Bearing outside, bearing inside, shafts and housing inside diameters must be manufactured within the recommended tolerances to ensure trouble-free bearing operation.

Due to the material structure, deva.tex[®] is elastic and, depending on the wall thickness, not dimensionally stable. The final tolerances only become apparent in the installed state. For this reason, compliance with the housing quality is of great importance. The shape accuracy and fit can only be determined exactly in a ring gauge or in installed condition.

deva.tex[®] flanged bushing

In the case of deva.tex[®] flanged sliding bearings, the transition radius between the back of the flange and the outside diameter of the radial sliding bearing must be taken into account by means of a chamfer on the housing.

* For reduced operating clearance. In case of precision bushes, the sliding surface is machined. Adaptation of the bearing tolerances to deviating shaft tolerances is possible on request

6.3 Special dimensions and fits

In addition to the standard dimensions, customer-specific sliding bearings are also available. In this case dimensions, tolerances, fits and also shape (additional chamfers or recesses) can be adapted. Some recommendations have to be considered for the design. The limitation of the max. possible sliding layer thickness depends in particular on the ratio of sliding layer to backing layer.

We will be pleased to assist you with the dimensioning of your sliding bearing. Please do not hesitate to contact us. You will find your direct contact on our homepage.

Special dimensions –

Table 6.3.1

possible sliding layer thicknesses					
≤ 50	max. 1.5				
≤100	max. 2.5				
≤200	max. 3.0				
≤ 300	max. 3.5				
≤ 500	max. 5.0				

Recommendation for minimum wall thickness

Wall thickness = $D_1 \times 0.03 + 0.8$

Machining allowance for high precision bearings

High precision bearings with ID tolerance class IT7 or better must be finish machined in the installed condition. In this case, deva.tex[®] can be supplied with machining allowance.

6.4 Installation by means of press-fitting

Press-fit is a universally applicable installation method for deva.tex[®] bushings. deva.tex[®] radial cylindrical sliding bearings can be mounted with a screw press or a hydraulic press. It is important to ensure that the mounting force is applied centrically. See figure below; installation by press-fitting. As mounting support, it is recommended to use a press-in mandrel.

Installation using an impact tool (hammer) is not permissible, as this can lead to damage to the sliding bearing.

Press-in tools

- Light oiling of the housing bore supports the installation and protects the components from seizure.
- Insert the press-in mandrel into the bushing and position it on the housing bore.
- The force must be applied evenly to the plain bearing via the press-fit mandrel in order to avoid tilting.

We would be pleased to provide you with further information and documentation related to sliding bearing installation. Please contact us!

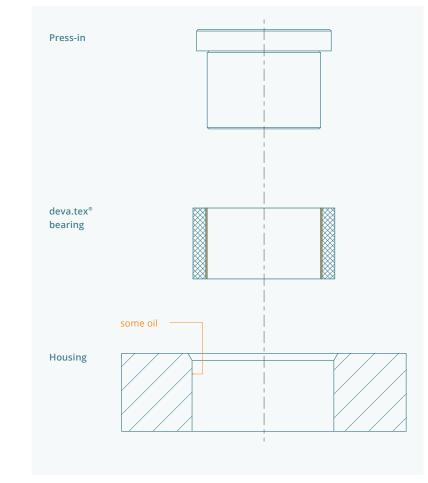
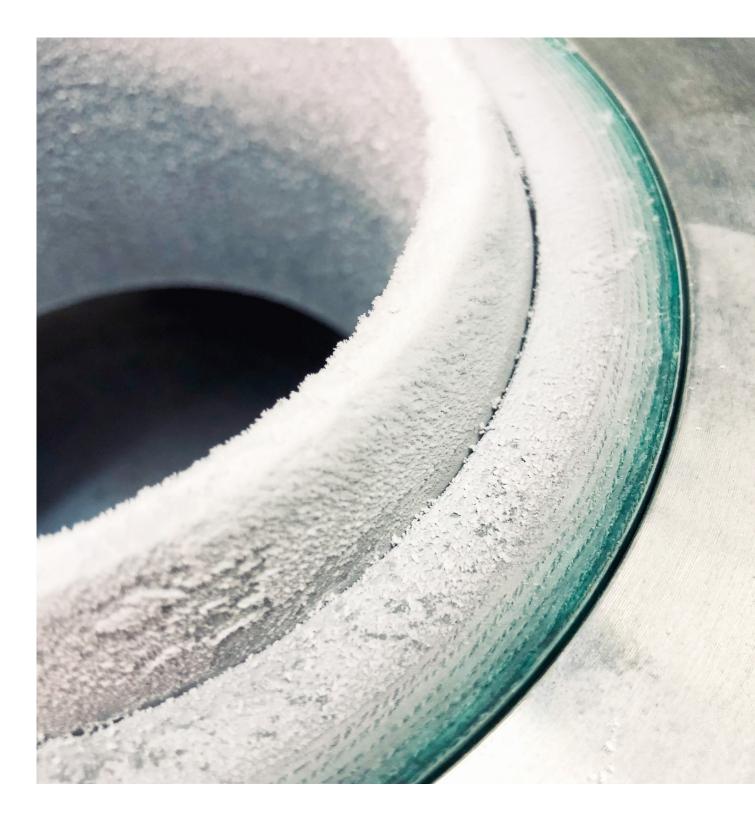



Figure 6.4.1

6.5 Installation by supercooling with liquid nitrogen

deva.tex[®] sliding bearings with outside diameter $D_2 > 150$ mm can be installed by supercooling with liquid nitrogen. Detailed mounting instructions are available on request also for dry-ice.

Sliding plates and segments

7.1 Dimensions of raw plates

Sliding plates are available in deva.tex[®] 532, 541, 542, 544 and 545. Only finished sliding plates and segments are available. Our raw plates, from which we manufacture the parts, have the following dimensions (see tables). If these dimensions are exceeded, multi-part solutions can be provided.

Dimensions of deva.tex® raw plates in mm

>	<i>w</i>	
\geq	Š	Š

deva.tex[®] 532⁽¹⁾

965±0.1	245±0.1	4 ^{+ 0.1} 4 _{- 0.05}	1
965±0.1	245±0.1	6 ^{+ 0.1} - 0.05	1.5
965±0.1	245±0.1	* 0.1 8 - 0.05	1.5
965±0.1	245±0.1	10 ^{+ 0.1} - 0.05	2

Table 7.1.1

deva.tex[®] 542⁽¹⁾, 544⁽¹⁾, 545⁽¹⁾

1050±0.15	625±0.15	2 to 100±0.1	customized

Table 7.1.2

deva.tex[®] 541⁽¹⁾

1250±0.15	1050±0.15	-	2 to 100 ± 0.2

Table 7.1.3

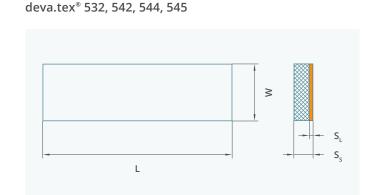
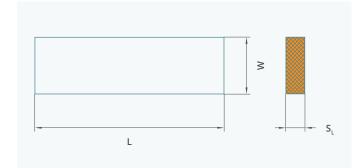
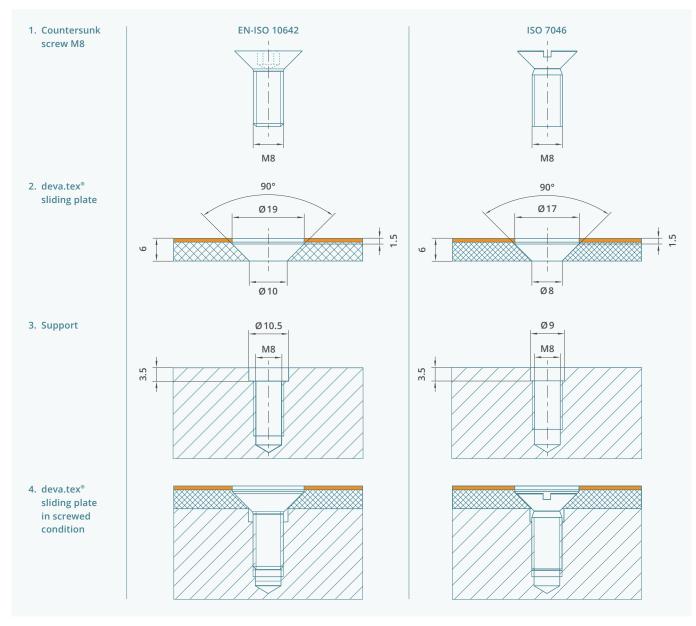
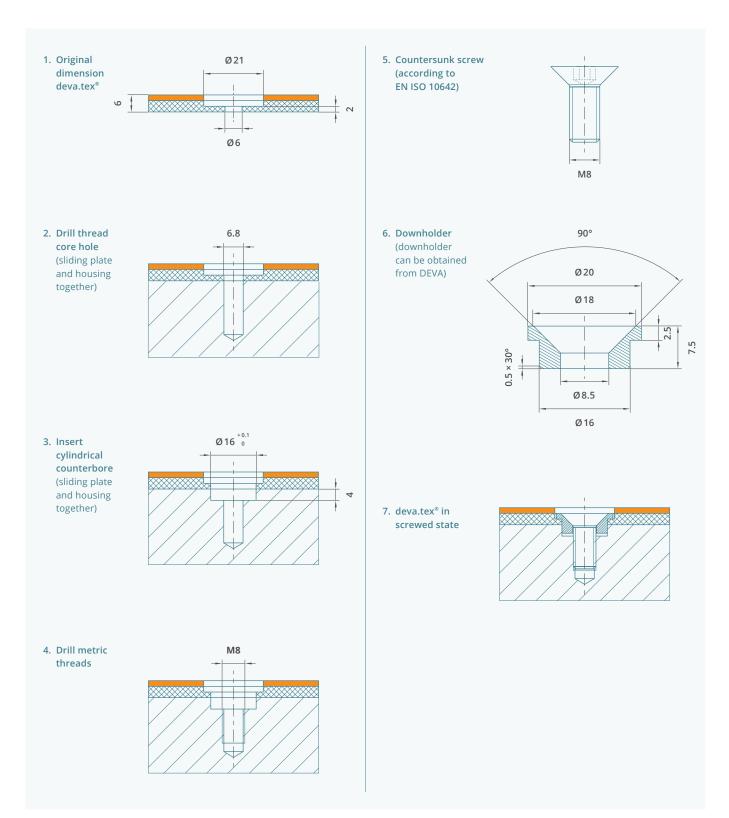


Figure 7.1.1

deva.tex[®] 541

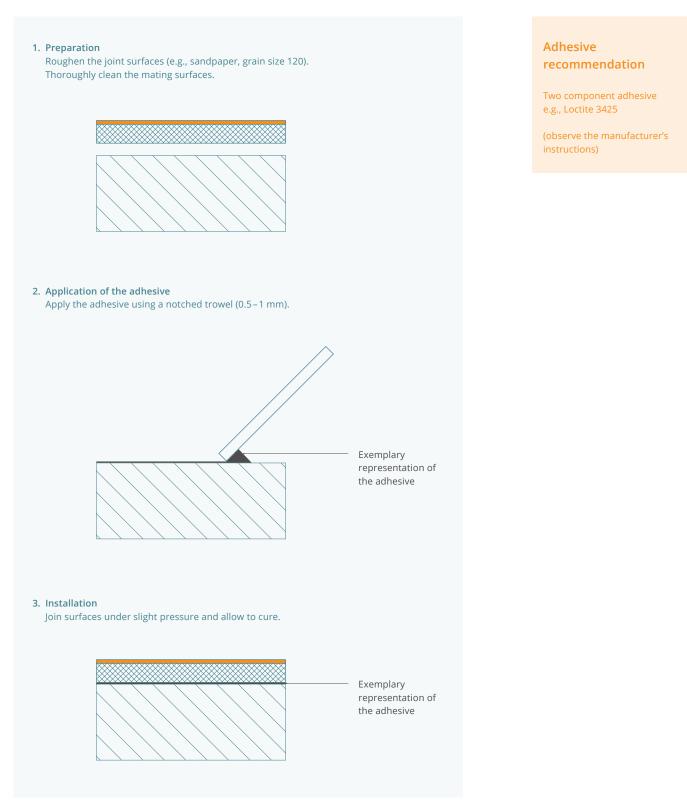



Figure 7.1.2


7.2 Installation of sliding plates, segments and thrust washers in general

Sliding plates and segments made of deva.tex[®] can be fixed with countersunk screws according to DEVA standard DN 1.33, with consideration of the screw head height in relation the plate thickness. However, depending on the load, additional securing by adhesive bonding or form-fitting is recommended. During installation, the screws should be installed with "Loctite 603" or "Loctite 278" screw locking adhesive. The temperature application limits and the manufacturer's specifications must be observed.

Special case with low plate thickness


Special solutions due to insufficient plate thickness and lack of additional fixing options (as in Figure 7.2.1) are available upon request.

7.3 Installation of sliding plates, segments and thrust washers with fixing device

7.4 Installation of sliding plates by adhesive bonding

Chemical resistance

deva.tex[®] and various contact media

Table 8.1.1. gives information about the chemical resistance of deva.tex[®] materials. Definitive statements about the actual behavior can only be made by carrying out operational tests.

					a.tex® oys	
Medium/ chemical substance	Concentration [%]	Temperature [°C]	532	541	542/544/545	552/558
Alcohols						
Allyl alcohol			×	×	×	×
Amyl alcohol			•		•	•
Butyl alcohol			×	×	×	×
Ethyl alcohol						
Ethylene glycol			•		•	•
Hydroxyacetone			•			
lsobutyl alcohol			•	•	•	•
Isopropyl alcohol						
Methyl alcohol				•	•	
Propyl alcohol						
Solvents Acetone*	100	23				0
	100	23	0	O X	0	
Benzene Methyl			×	×	×	×
Methyl ethyl			×	Ô	×	-
Naphthalene			$\hat{\bullet}$		Î	×
Toluene						
Trichloroethane			×	×	×	×
Fuels			<u>^</u>	^	^	<u>^</u>
Petrol						•
Diesel						
Kerosene						
		1		_		
Oils						
Cottonseed oil				•		
Petrol			•	•	•	•
Gear oil			•	•		•
Hydraulic oil						
Linseed oil			•	•	•	•
Engine oils		1				

					a.tex® loys	
Medium/ chemical substance	Concentration [%]	Temperature [°C]	532	541	542/544/545	552/558
Gases						
Acetylene			•	•		
Ether			•		•	•
Bromine			×	×	×	×
Butane			•			
Chlorine			×	×	×	×
Natural gas						
Sulfur dioxide						
Fluorine			×	×	×	×
Carbon dioxide						
Ozone						
Propane						
Nitrogen						
Hydrogen				•		
Salts						
Ammonium chloride			•		•	
Ammonium nitrate			•	•	•	
Ammonium sulfate			•	•	•	•
Ferric chloride			•			
Magnesium chloride						
Magnesium carbonate				•		•
Magnesium sulfate						
Natriumacetat				•		
Sodium acetate						•
Sodium			•			

Table 8.1.1

					.tex® oys	
Medium/ chemical substance	Concentration [%]	Temperature [°C]	532	541	542/544/545	552/558

Acids

Acius						
Arsenic acid	10		×	×	×	×
Boric acid	10					
Aacetic acid	10					
Hydrofluoric acid	10		×	×	×	×
Phosphoric acid*	10	23				
	10	70		0		
Nitric acid*	10	23	0	0	0	0
	10	70	×	×	×	×
Carbonic acid	10		×	×	×	×
Hydrochloric acid*	10					
Citric acid	10		•	•		
Sulfuric acid*	10	23		0		0
	10	70	0	×	0	×
Hydrogen peroxide*	35	23	•	•		0
	35	70	0	/	0	×

Bases

Dases						
Ammonium hydroxide			•	•	•	•
Calcium hydroxide			•	•	•	•
Potassium hydroxide*	5	23	×	×	×	0
	55	70	×	×	×	×
Magnesium hydroxide			•	•		
Sodium hydroxide*	5	23				×
	5	70	0	0	0	×
Sodium hypochlorite*	15	23	0	0	0	0
	1	70	×	×	×	×

Table 8.1.1

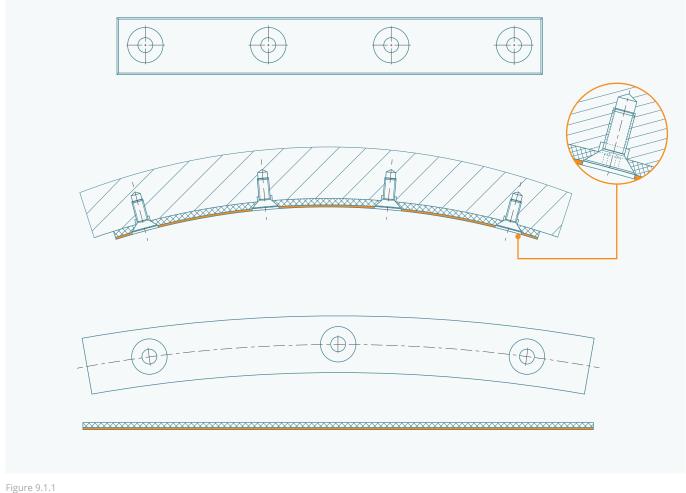
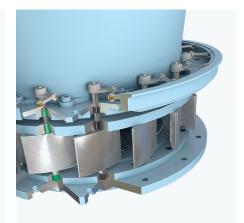

					a.tex® oys	
Medium/ chemical substance	Concentration [%]	Temperature [°C]	532	541	542/544/545	552/558
Other						
Ammonia			×	×	×	×
Freon				•	•	
Formaldehyde				•		
Inhibitor Glycol based e.g., Dowcal N [*]			•	•	•	•
Inhibitor Potassium hydroxide based e.g., Performax CL1300*			•	•	•	•
Calcium Oxide			•	•	•	
Sodium nitrate			•	•	•	
Water*	100	23	•	•	•	
	100	70				
	100	100	×	×	×	×
Steam > 100°C			×	×	×	×
Zinc sulfate			•	•		

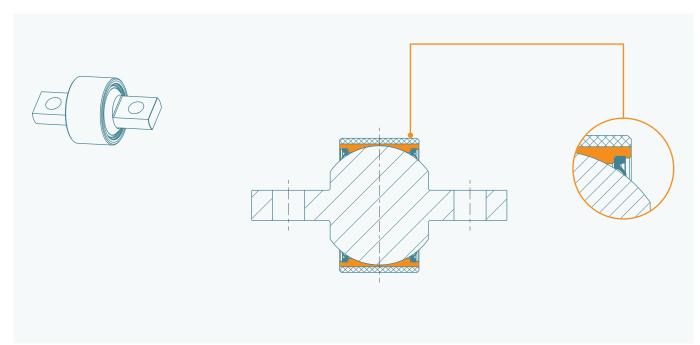
Table 8.1.1

× Not recommended


Design examples and applications

deva.tex[®] radial and axial segments

deva.tex® guide vane bearing, water turbine



deva.tex® sliding slewing rings in rail vehicles

deva.tex[®] special spherical bearing

Data for the design of DEVA® sliding bearings

Personal data

Address
Contact person
Phone
Fax
Mobile phone
Email

Description of the application

New design

Existing design

- Steel industry
 - Wind energy
 - O Rubber and plastics industry
- O Steam and Gas Turbines
- Offshore and Marine
- O Heavy-duty Vehicles
- O Railway
- O Hydro Power
- O Other

Bearing type O Sliding plate Bushing O Shaft rotates Bearing rotates ۵ ۵ ≥ Angular motion Axial motion S L B, O Flanged bushing bearing O Spherical bearing O Thrust washer O Floating bearing O Fixed ilting angle bearing ۵ ۵ ے 2 ൭ഀ Ď S S. B, B B,

Pos. 1 Pos. 3

Dimensions [mm]

Quantity

Binensions [mm]		
Inner diameter D ₁ (D ₅)		
Outer diameter D_2 (D_6)		
Bearing width B ₁		
Outer ring width B _F		
Flange outer diameter D ₃		
Flange thickness S _F		
Wall thickness S _T		
Plate length L		
Panel width W		
Plate thickness S _s		

Load

Static	0	0	0
Dynamic	0	0	0
Alternating	0	0	0
Shock loads	0	0	0
Radial load [kN]			
Axial load [kN]			
Surface pressure			
Radial [MPa]			
Axial [MPa]			

Mating material

Material no./type		
Hardness [HB/HRC]		
Roughness R _a [µm]		

Housing material

|--|

Lubrication

Dry run	0	0	0
Permanent lubrication	0	0	0
Medium lubrication	0	0	0
Medium			
Lubricant			
Initial lubrication	0	0	0
Hydrodynamic lubrication	0	0	0
Dynamic viscosity			

Move

Speed [rpm]		
Sliding speed [m/s]		
Stroke length [mm]		
Double strokes [/min]		
Rotation angle [°]		
Frequency [n/min]		
Tilt angle (spherical bearing) [°]		

Operating time

Continuous operation		
Intermittent operation		
Duty operation [%/h]		
Days/Year		
Frictional distance [km]		

Fits/Tolerances

Shaft		
Bearing housing		

Environmental conditions

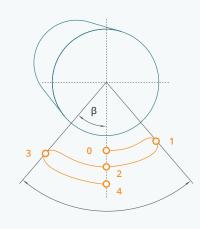
Temperature at bearing		
Contact medium		
Other influences		

Lifetime

Desired operating time [h]		
Permissible wear [mm]		

Comments

- O Certificate required (e.g., 3.1)
- Acceptance procedure (e.g., 3.2)



Angle

The angle β is defined by the movement from the middle position to one end point.

Cycle

A cycle is four times the angle β . The calculation of the expected friction distance is based on this.

Example Bushing $D_1 = 50$ mm and angle $\beta = 5^{\circ}$

1 cycle shows a friction distance of 8.73 mm

Disclaimer

The present technical documentation has been prepared with care and all the information verified for its correctness. No liability, however, can be accepted for any incorrect or incomplete information. The data given in the documentation are intended as an aid for assessing the suitability of the material. They are derived from our own research as well as generally accessible publications. The sliding friction and wear values stated by us or appearing in catalogues and other technical documentation do not constitute a guarantee of the specified properties. They have been determined in our test facilities under conditions that do not necessarily reflect the actual application of our products and their service environment or permit comprehensive simulation in relation to them.

We provide guarantees only after written agreement of the test procedures and parameters and of all the relevant characteristics which the product is required to have. All transactions conducted by DEVA® are subject, in principle, to our terms of sale and delivery as indicated in our offers, product brochures and price lists. Copies are available upon request. Our products are subject to a constant process of development. DEVA® reserves the right to amend the specification or improve the technological data without prior notice.

DEVA®, deva.bm®, deva.bm®/9P, deva.metal®, deva.glide®, deva.tex®, deva.eco® and deva.ThrustSeal® are registered trademarks of Federal-Mogul DEVA GmbH, D-35260 Stadtallendorf, Germany.

Federal-Mogul DEVA GmbH A Tenneco Group Company

Schulstraße 20 35260 Stadtallendorf Germany

Phone + 49 6428 701-0 Fax + 49 6428 701-108 deva.sales@tenneco.com

deva.de Maintenance-free, self-lubricating sliding bearings

 2023 Tenneco Inc. All rights reserved.
 All trademarks are owned by Tenneco Inc. or one of its subsidiaries, in one or more countries.

tenneco.com

